A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Concept | Skills (where stated) | Chapter, Giancoli | Subsection, Giancoli | Corresponding in College Physics Open Stax | University Physics Open Stax Volume 1 Questions | Khan Academy | ||||||||||||||||||
2 | Simplification of ‘real-world’ problems | building conceptual models of simple physical systems | 1 | page 2-5 1.1 The Nature of Science 1.2 Physics and its Relation to other Fields 1.3 Models, Theories, and Laws | Page 5- 12 Focus on 8-11 | ||||||||||||||||||||
3 | Appropriate units | choosing appropriate units for physical quantities; | 1 | page 8-11 1.5 Units, Standards, and the SI System | page 13-17 | ||||||||||||||||||||
4 | unit conversions; | 1 | page 11-12 1.6 Converting Units | page 17-20 | 1.3 Unit Conversion | ||||||||||||||||||||
5 | Uncertainty associated with measurements. | understanding uncertainties | 1 | page 5-8 1.4 Measurement and Uncertainty; Significant Figures | page 20-26 | 1.6 Sig Figs and Uncertainty | |||||||||||||||||||
6 | estimation of orders of magnitude; | 1 | page 13-15 1.7 Order of Magnititde: Rapid Estimating | page 15 (not much info) | 1.4 Unit Estimation | ||||||||||||||||||||
7 | ability to use dimensional analysis in simple situations. | 1 | page 16 Dimensions and Dimensional Analysis | page 17 (not much info) | 1.4 Dimensions | ||||||||||||||||||||
8 | Summary, questions, and problems | Page 17-20 | page 27-31 | ||||||||||||||||||||||
9 | |||||||||||||||||||||||||
10 | Position and discplacement | 2 | page 21-23 2.1 Reference Frames and Displacement | page 32-35 | 3.1 Position, Displacemenet, and Average Velocity | Reference Frames | |||||||||||||||||||
11 | Speed and Velocity | 2 | page 23-25 2.2 Average Velocity 2.3 Instantaneous Velocity | page 36-40 | 3.2 Instantaneous Velocity and Speed | Average Velocity and Average Speed | |||||||||||||||||||
12 | Acceleration | 2 | page 26-27 2.4 Acceleration | page 40-49 foccus on 40-44 | 3.3 Average and Instantaneous Acceleration | Acceleration | |||||||||||||||||||
13 | Motion at constant acceleration | solve constant acceleration motion problems (such as inclined-plane problems or free-fall problems) | 2 | page 27 -38 2.5 Motion at constant acceleration 2.6 Solving Problems 2.7 Freely Falling Objects | page 49-69 | 3.4 Motion with Constant Acceleration 3.5 Free Fall | Motion with constant acceleration | ||||||||||||||||||
14 | Graphical analysis of motion | construct x-vs-t, v-vs-t, and a-vs-t graphs from descriptions of motion (and vice-versa) | 2 | page 39-40 2.8 Graphical Analysis of Linear Motion | page 69-76 | Velocity and speed from graphs | Acceleration vs. Time Graphs | ||||||||||||||||||
15 | Summary, questions, and problems | page 40-48 | page 76-88 | ||||||||||||||||||||||
16 | |||||||||||||||||||||||||
17 | Vectors and vector manipulation (addition, subtraction, multiplication of vector by scalar); separation of 2-D motion problems into independent axes. | 3 | page 49-57 3.1 Vectors and Scalars 3.2 Addition of Vecotrs-- Graphical Methods 3.3 Subtraction of Vectors, and Multiplication of a Vector by a Scalar 3.4 Adding Vectors by Components | page 35; 90-92 (maybe not so relevant?); 92-106 | 2.1 & 2.2 Vectors & Scalars and Coordinate Systems | Vectors and Scalars | |||||||||||||||||||
18 | analysis of 2-D motion (specifically projectile motion) | 3 | page 58-65 3.5 Projectile Motion 3.6 Solving Projectile Motion Problems 3.7 Projectile Motion Is Parabolic 3.8 Relative Velocity | page 106-121 | 4.5 Relative Motion in 1D and 2D 4.3 Projectile Motion | Projectile Motion | |||||||||||||||||||
19 | Summary, questions, and problems | page 66-74 | page 122-132 | ||||||||||||||||||||||
20 | |||||||||||||||||||||||||
21 | Forces Contact forces and forces acting at a distance | 4 | page 76; 84-86 4.1 Force 4.6 Weight-- the force of graveity and the normal force | page 135 page 138, 143-145 page 146-149 | 5.4 Mass and Weight | Normal and Contact Force | |||||||||||||||||||
22 | Newton's three laws of motion Inertial refrence frames Inertia Mass | 4 | page 77-83 4.2 Newton's First Law of Motion 4.3 Mass 4.4 Newton's Second Law of Motion 4.5 Newton’s Third Law of Motion | page 136- 145 page 153 Inertial reference frames = 151 | 5.2, 5.3, 5.5 Newton's Laws 6.1 Solving Problems with Newton's Laws | Newton's Laws | |||||||||||||||||||
23 | Reaction forces | identify reaction forces | 4 | ||||||||||||||||||||||
24 | Friction | draw and analyse free-body diagrams solve dynamics problems involving multiple forces and multiple bodies (such as weights-and-pulleys problems) moving rectilinearly | 4 | 4.7 Solving Problems with Newton’s Laws: Free-Body Diagrams 4.8 Problems Involving Friction, Inclines | page147-163;133 174-179 | 6.2 Friction | Inclined Planes + Friction | Tension | |||||||||||||||||
25 | Summary, questions, and problems | page 98-108 | page 165-174 | ||||||||||||||||||||||
26 | |||||||||||||||||||||||||
27 | Uniform circular motion Centripetal acceleration | analysis of uniform circular motion identification and analysis of forces providing centripetal acceleration (such as analysis of banked curves) | 5 | page 109-117 5.1 Kinematics of Uniform Circular Motion 5.2 Dynamics of Uniform Circular Motion 5.3 Highway Curves: Banked and Unbanked | page 202; 204-214 | 4.4 Uniform Circular Motion 6.3 Centripetal Force | Centripetal acceleration | Centripetal Force | |||||||||||||||||
28 | Newton’s law of gravitation | 5 | page 119- 122 5.5 Newton’s Law of Universal Gravitation 5.6 Gravity Near the Earth’s Surface | page 215-221 | 13.1-13.3 Law of Universal Gravitation | Gravitation | |||||||||||||||||||
29 | “Weightlessness” Newton’s synthesis of Kepler’s laws | 5 | page 122-128 5.7 Satellites and “Weightlessness” 5.8 Planets, Kepler’s Laws, and Newton’s Synthesis | page 222-229 missing "Sun/Earth Reference Frames" | 13.4 Satellitle Orbitals and NRG 13.5 Kepler's Laws of Planetary Motion | Orbit | Kepler's Laws | ||||||||||||||||||
30 | Summary, questions, and problems | page 130-137 | page 229-239 | ||||||||||||||||||||||
31 | . | ||||||||||||||||||||||||
32 | Work by a constant force | 6 | page 139-142 6.1 Work Done by a Constant Force 6.2 Work Done by a Varying Force | page 240-242 missing "work done by a varying Force) | 7.1 Work | Intro to Work | |||||||||||||||||||
33 | Kinetic energy Work-energy principle | 6 | page 142-145 6.3 Kinetic Energy, and the Work-Energy Principle | page 242-247 | 7.2 Kinetic NRG 7.3 Work-NRG Theorem | Work-Energy Principle | Kinetic NRG | ||||||||||||||||||
34 | Potential energy | 6 | page 145-148 6.4 Potential Energy | page 247-252 | 8.1 Potential NRG of a System | Potential NRG | Hooke's Law | ||||||||||||||||||
35 | Conservative and non-conservative forces | 6 | page 149-150 6.5 Conservative and Nonconservative Forces | page 252-259 | Conservative Forces | ||||||||||||||||||||
36 | Conservation of energy. | 6 | page 150-160 6.6 Mechanical Energy and its conservation 6.7 Problem Solving Using conservation Mechanical Energy 6.8 Other Forms of Energy and Energy Transformations; The Law of Conservation of Energy 6.9 Energy Conservation with Dissipative Forces: Solving Problems 6.10 Power | 260-268 | 8.3 Conservation of NRG 7.4 Power | Power | Conservation of NRG | ||||||||||||||||||
37 | Summary, questions, and problems | page 161-169 | page 275-287 | ||||||||||||||||||||||
38 | |||||||||||||||||||||||||
39 | Momentum | 7 | page 171-172 7.1 Momentum and Its Relation to Force | page 286-288 | 9.1 Linear Momentum | Momentum | |||||||||||||||||||
40 | Conserved quantities (momentum and/or energy) | recognize which quantities are conserved in collisions | 7 | page 173-176 7.2 Conservation of Momentum | 290-293 | 9.3 Conservation of Momentum | Conservation of Momentum | ||||||||||||||||||
41 | Isolated system Collisions in one and two dimensions; | analyze collisions using conservation laws; recognize when to use impulse in collisions. | 7 | page 176- 177; 182-184 7.3 Collisions and Impulse 7.7 Collisions in Two Dimensions | 288-290 300-303 | 9.2 Impulse and Collision 9.5 Collisions in Multiple Dimensions | 2D Momentum Problem & Solution | Impulse Problem & Solution | |||||||||||||||||
42 | Elastic vs. inelastic collisions | 7 | page 177-182 7.4 Conservation of Energy and Momentum in Collisions 7.5 Elastic Collisions in One Dimension 7.6 Inelastic Collisions | 294-299 | 9.4 Types of Collisions | Types of Collisions | |||||||||||||||||||
43 | Center of mass | describe center-of-mass motion | 7 | page 184-186; 187-189 7.8 Center of Mass (CM) 7.10 CM and Translational Motion | No Corresponding Section | 9.6 Centre of Mass | Centre of Mass | ||||||||||||||||||
44 | Summary, questions, and problems | page 189-197 | page 308-316 | ||||||||||||||||||||||
45 | |||||||||||||||||||||||||
46 | Variables used for description of angular motion Angular displacement, angular velocity, angular acceleration | relate linear motion to angular motion; angular acceleration | 8 | page 199-204 8.1 Angular Quantities 8.2 Constant Angular Acceleration | page 346-350 (203-206) | 10.1 Rotational Variables 10.3 Relating Angular and Translational Quantities | Rotational Dynamics | ||||||||||||||||||
47 | Parallel between linear quantities and angular quantities | ||||||||||||||||||||||||
48 | Kinematics of rotation at constant angular acceleration | 8 | page 204-205 8.3 Rolling Motion (Without Slipping) | page 350-354 | 10.2 Rotation with Constant Average Aceleration | Example Solving Rolling Motion Problems | |||||||||||||||||||
49 | Rotational dynamics: torque, moment of inertia | torques, net torque | 8 | page 206-212 8.4 Torque 8.5 Rotational Dynamics; Torque and Rotational Inertia 8.6 Solving Problems in Rotational Dynamics | page 355-359 | 10.6 Torque 10.5 Calculating Moments of Inertia 10.7 Newton's 2nd Law for Rotation | Torque and Rotational Inertia | ||||||||||||||||||
50 | Rotational kinetic energy | analyze rotational motion in situations of constant angular acceleration | 8 | page 212-214 8.7 Rotational Kinetic Energy | page 360-366 | 10.4 Rotational Kinetic NRG 10.8 Power and Work | Rotational KE | ||||||||||||||||||
51 | Angular momentum | understand when to apply conservation of angular momentum. | 8 | page 214 - 218 8.8 Angular Momentum and Its Conservation 8.9 Vector Nature of Angular Quantities | page 366-371; 376-377 | 11.2 Angular Momentm 11.3 Conservation of Momentum | Angular Momentum | ||||||||||||||||||
52 | analyze simple mechanical systems | ||||||||||||||||||||||||
53 | Summary, questions, and problems | page 219-229 | page 379-388 | ||||||||||||||||||||||
54 | |||||||||||||||||||||||||
55 | Description of kinematic variables (x, v, a) in SHM | 11 | 11.1 Simple Harmonic Motion— Spring Oscillations | page 613-618 | 15.1 Simple Harmonic Motion | Simple Harmonic Motion | |||||||||||||||||||
56 | Energy in an oscillator | 11 | 11.2 Energy in Simple Harmonic Motion | page 620-622 | 15.2 Energy in SHM | ||||||||||||||||||||
57 | Period and frequency of oscillation | analysis of simple mechanical oscillators | 11 | 11.3 The Period and Sinusoidal Nature of SHM | page 612-613 | 15.3 Comparing SHM to Circular Motion | Period of Mass on a Spring | ||||||||||||||||||
58 | Two classical oscillators (mass on a spring, pendulum); | 11 | 11.4 The Simple Pendulum | page 618-620 | 15.4 Pendulums | Pendulum | |||||||||||||||||||
59 | Resonance | 11 | 11.6 Forced Oscillations; Resonance | page 629-631 | 15.6 Forced Oscillations | ||||||||||||||||||||
60 | Waves; types of waves and their speeds | 11 | 11.7 Wave Motion 11.8 Types of Waves and Their Speeds:transverse wave and longitudinal wave | pages 631-633 | 16.1 Travelling Waves 16.3 Wave Speed on String | Transverse & Longitudinal Waves | Periodic Waves | ||||||||||||||||||
61 | Wave phenomena: reflection, refraction, and superposition. | description of waves, wave motion, and wave behaviour | 11 | 11.10 Refelction and Transmission of Waves 11.11 Interference; Principle of Superposition 11.12 Standing Waves; Resonance 11.13 Refraction 11.14 Diffraction | pages 634-637 (missing info on refraction and diffraction) | 16.5 Interference with Waves 16.6 Standing Waves and Resonance | Wave Interference | ||||||||||||||||||
62 | Summary, questions, and problems | page 319-327 | page 642-649 | ||||||||||||||||||||||
63 | |||||||||||||||||||||||||
64 | Sound as a pressure wave Characteristics of human-perceived sound | 12 | 12.1 Characteristics of Sound | page 652-657 | 17.1 Sound Waves 17.2 Spee of Sound | Intro To Sound | |||||||||||||||||||
65 | Loudness, intensity, bels, and decibels | 12.2 Intensity of Sound: Decibels | page 657-661 | 17.3 Sound Intensity | Decibels | ||||||||||||||||||||
66 | The human ear and human perception of loudness | 12 | 12.3 The Ear and Its Response; Loudness | page 673- 678 too much info | |||||||||||||||||||||
67 | Vibrating strings Vibrating air columns Interference Beats | 12 | 12.4 Sources of Sound: Vibrating Strings and Air Columns 12.6 Interference of Sound Waves; Beats | page 666-672 not enough info on "beats" | 17.5 Sources of Muscial Sound 17.6 Beats | Beats | Sound - Open Tubes | Sound - Closed Tubes | |||||||||||||||||
68 | The Doppler effect | 12 | 12.7 Doppler Effect | page 661-664 | 171.7 Doppler Effect | Doppler Effect | |||||||||||||||||||
69 | Summary, questions, and problems | page 351-358 | page 685-692 | ||||||||||||||||||||||
70 | Volume 3 of University Physics Open Stax | ||||||||||||||||||||||||
71 | Light: particle or wave; Huygen's | 24 | 24.1 Waves vs. Particles; Huygens’ Principle and Diffraction 24.2 Huygens’ Principle and the Law of Refraction | page 1061-1064 | 1.6 Huygen's Principle | ||||||||||||||||||||
72 | Young's Double Slit | 24 | 24.3 Interference—Young’s Double-Slit Experiment | page 1064-1068 | 3.1 Young's Double Slit | Double-Slit | |||||||||||||||||||
73 | Diffraction; Diffraction Grating | 24 | 24.5 Diffraction by a Single Slit or Disk 24.6 Diffraction Grating | page 1071-1074 page 1068 - 1071 | 4.1 Single Slit Diffraction 4.4 Diffraction Gratings | Single Slit | |||||||||||||||||||
74 | Interference | 24 | 24.8 Interference in Thin Films | page 1078- 1083 | 3.4 Interference in Thin Films | Thin Film Interference | |||||||||||||||||||
75 | Rayleigh's Criterion | page 1074 - 1078 | Rayleigh's & Diopeters | ||||||||||||||||||||||
76 | Volume 3 of University Physics Open Stax | ||||||||||||||||||||||||
77 | The ray model; Wave phenomena as applied to light | 23 | 23.1 The Ray Model of Light | page 984 - 985 | 1.1 Nature of Light | ||||||||||||||||||||
78 | Planar mirrors | 23 | 23.2 Reflection; Image Formation by a Plane Mirror | page 1015 page 985 - 987 | 2.1 Images formed by a Plane Mirror | ||||||||||||||||||||
79 | Curved mirrors; the mirror equation; sign conventions; virtual vs. real images | 23 | 23.3 Formation of Images by Spherical Mirrors | page 1016 - 1022 | 2.2 Spherical Mirrors | Mirrors | |||||||||||||||||||
80 | Total internal reflection | 23 | 23.6 Total Internal Reflection | page 992 - 997 | 1.4 Total Internal Reflection | Total Internal Reflection | |||||||||||||||||||
81 | Thin lenses; the lens equation | 23 | 23.7 Thin Lenses 23.8 Thin Lens Equation | page 1006 - 1014 | 2.4 Thin Lenses | Thin Lens | Lenses | ||||||||||||||||||
82 | Multilens systems | 23 | 23.9 Combinations of Lenses | N/A | Multiple Lens | ||||||||||||||||||||
83 | The human eye; simple corrective lenses; diopters | 25 | 25.2 The Human Eye and Corrective Lenses | page 1032 - 1039 | 2.5 The Human Eye | Diopters, Human Eye | |||||||||||||||||||
84 | |||||||||||||||||||||||||
85 | |||||||||||||||||||||||||
86 | |||||||||||||||||||||||||
87 | |||||||||||||||||||||||||
88 | |||||||||||||||||||||||||
89 | |||||||||||||||||||||||||
90 | |||||||||||||||||||||||||
91 | |||||||||||||||||||||||||
92 | |||||||||||||||||||||||||
93 | |||||||||||||||||||||||||
94 | |||||||||||||||||||||||||
95 | |||||||||||||||||||||||||
96 | |||||||||||||||||||||||||
97 | |||||||||||||||||||||||||
98 | |||||||||||||||||||||||||
99 | |||||||||||||||||||||||||
100 |